536 research outputs found

    Reference face graph for face recognition

    Get PDF
    Face recognition has been studied extensively; however, real-world face recognition still remains a challenging task. The demand for unconstrained practical face recognition is rising with the explosion of online multimedia such as social networks, and video surveillance footage where face analysis is of significant importance. In this paper, we approach face recognition in the context of graph theory. We recognize an unknown face using an external reference face graph (RFG). An RFG is generated and recognition of a given face is achieved by comparing it to the faces in the constructed RFG. Centrality measures are utilized to identify distinctive faces in the reference face graph. The proposed RFG-based face recognition algorithm is robust to the changes in pose and it is also alignment free. The RFG recognition is used in conjunction with DCT locality sensitive hashing for efficient retrieval to ensure scalability. Experiments are conducted on several publicly available databases and the results show that the proposed approach outperforms the state-of-the-art methods without any preprocessing necessities such as face alignment. Due to the richness in the reference set construction, the proposed method can also handle illumination and expression variation

    Person re-identification by robust canonical correlation analysis

    Get PDF
    Person re-identification is the task to match people in surveillance cameras at different time and location. Due to significant view and pose change across non-overlapping cameras, directly matching data from different views is a challenging issue to solve. In this letter, we propose a robust canonical correlation analysis (ROCCA) to match people from different views in a coherent subspace. Given a small training set as in most re-identification problems, direct application of canonical correlation analysis (CCA) may lead to poor performance due to the inaccuracy in estimating the data covariance matrices. The proposed ROCCA with shrinkage estimation and smoothing technique is simple to implement and can robustly estimate the data covariance matrices with limited training samples. Experimental results on two publicly available datasets show that the proposed ROCCA outperforms regularized CCA (RCCA), and achieves state-of-the-art matching results for person re-identification as compared to the most recent methods
    • …
    corecore